La semplicità non è più un optional

microscopia, imaging, microscopisti, microscopio plug and play, biotecnologia, biologia

Lo sviluppo tecnologico, informatico e molecolare ha portato alla creazione di microscopi con prestazioni sempre migliori arrivando addirittura a superare il limite ottico di risoluzione (200nm). Tuttavia, la crescente performance corrisponde ad un’inevitabilmente crescita della complessità degli strumenti e quindi del loro utilizzo. Di conseguenza, la vera sfida odierna non è più produrre microscopi dalle performance eccezionali, ma di combinare qualità d’immagine e facilità d’utilizzo. Per quanto la necessità di immagini ad altissime risoluzioni sia essenziale, la rapidità nelle analisi e nella produzione di risultati, la semplicità della gestione dei dati e della loro quantificazione iniziano ad avere un peso sempre più importante, se non addirittura maggiore, sulla complessa bilancia del microscopio perfetto.

Il SEM per lo studio della texture delle celle fotovoltaiche

SEM, microscopia, microscopia elettronica, celle

Nel settore delle energie rinnovabili, i sistemi per la produzione di energia solare fotovoltaica (PV) rivestono da molti anni un ruolo di primo piano. In quanto componente centrale della produzione di energia fotovoltaica, le celle PV sono sempre oggetto di sviluppo e ottimizzazione. Il microscopio elettronico a scansione (SEM) svolge un ruolo fondamentale sia nell’ambito R&D che in quello del miglioramento del processo produttivo delle celle fotovoltaiche.

Detto in maniera molto sintetica, una cella PV è un sottile foglio (wafer) di materiale semiconduttore in grado di convertire l’energia solare in energia elettrica. Le celle fotovoltaiche attualmente in commercio e prodotte in serie sono principalmente celle in silicio, che si dividono in celle in silicio monocristallino, celle in silicio policristallino e celle in silicio amorfo.

Nell’attuale processo di produzione delle celle fotovoltaiche, al fine di migliorare ulteriormente l’efficienza di conversione energetica, sulla superficie della cella viene solitamente realizzata una speciale struttura texturizzata. Nello specifico, la texture sulla superficie di queste celle incrementa l’assorbimento della luce grazie all’aumentato numero di riflessioni della luce irradiata sulla superficie del wafer di silicio. Questa particolare texture non solo riduce la riflettività finale della superficie, ma crea anche “trappole di luce” all’interno della cella, aumentando così in modo significativo l’efficienza di conversione della cella stessa, anche a diversi angoli di incidenza (Fig.1). Rispetto ad una superficie piana, infatti, un wafer di silicio con struttura superficiale piramidale ha una maggiore probabilità che la componente riflessa dalla luce incidente agisca nuovamente sulla superficie del wafer anziché riflettersi in aria, consentendo l’assorbimento di più fotoni e fornendo dunque più coppie elettrone-lacuna.

Analisi dei materiali ceramici con microscopia elettronica a scansione

microscopia, microscopio elettronico, sem, sem feg, emissione di campo, ciqtek, sem5000

I materiali ceramici presentano una serie di proprietà tra cui elevato punto di fusione, elevata durezza, ottima resistenza all’usura e resistenza all’ossidazione, e per questo sono ampiamente utilizzati in svariati settori come l’industria elettronica, automobilistica, tessile, chimica e aerospaziale. Le proprietà fisiche dei materiali ceramici dipendono in gran parte dalla loro microstruttura, che è possibile caratterizzare grazie all’osservazione al SEM.

I materiali ceramici sono una classe di materiali inorganici non metallici realizzati a partire da composti naturali o sintetici mediante formatura e sinterizzazione ad alta temperatura, e possono essere suddivisi in materiali ceramici generali e materiali ceramici speciali.

I materiali ceramici speciali possono essere a loro volta classificati o in base alla composizione chimica: ceramiche su base ossidi, nitruri, carburi, boruri, siliciuri, ecc.; oppure in base alle loro caratteristiche e applicazioni: ceramiche strutturali e ceramiche funzionali.

Il posto dei microscopisti

Siamo così come ci vedi: trasparenti e pieni di passione per il nostro lavoro. Essere affidabili è un obiettivo che ogni membro del nostro team sente suo e ci impegniamo per poter garantire sempre il meglio ai nostri clienti: la nostra professionalità è il nostro biglietto da visita!
contattaci +39347942823 info@m-s.it

High-Speed Arbitrary Frame Scanning: la libertà di scegliere

microscopia, biologia, biotecnologie, neuroscienze, femtonics, due fotoni,

Come già sottolineato più volte nei nostri precedenti articoli e application notes (visita questa pagina per trovarli tutti: Femtonics), la tecnologia principe delle neuroscienze è la microscopia a 2 fotoni. Tale tecnica di microscopia consente di penetrare tessuti spessi sia in vitro che in vivo grazie all’utilizzo di laser ad ampia lunghezza d’onda. Pertanto, nel campo delle neuroscienze il microscopio a 2 fotoni viene comunemente utilizzato per osservare sezioni di tessuto cerebrale oppure direttamente il sistema nervoso dell’organismo vivente. Oltre a consentire l’accesso ai tessuti cerebrali più profondi, i laser dei microscopi a due fotoni hanno una fototossicità ridotta, pertanto compatibili con campioni vivi.

Tuttavia, nonostante l’efficienza dei microscopi a 2 fotoni è ragionevole attendersi che la visualizzazione di campioni tridimensionali sia caratterizzata da svariate difficoltà tecniche, soprattutto in vivo. Oltre alla marcatura a fluorescenza, al monitoraggio dei parametri vitali dell’animale, alle procedure di chirurgia o di anestesia necessarie, troviamo il problema dell’orientamento e della messa a fuoco del punto d’interesse. È infatti plausibile supporre che durante l’osservazione di campioni tridimensionali in vivo, la nostra struttura di interesse (es. assone) non sia posizionata nella direzione desiderata (ovvero quella del piano focale).

Corso di Microscopia elettronica a scansione

La nostra attività di formazione ad alto valore tecnico continua, abbiamo già fissato le date per il prossimo corso SEM. Nella nostra sede di Rovereto ospiteremo le attività del corso di microscopia elettronica a scansione, sarà tenuto dai nostri esperti che saranno a disposizione dei corsisti durante i due giorni di discussione su temi quali: profondità di campo, risoluzione, aberrazioni, sistemi di vuoto, astigmatismo e molti altri.

I posti sono limitati per poter garantire una esperienza stimolante a tutti i partecipanti.

Durante il corso sarà possibile vedere in azione alcuni dei microscopi elettronici a scansione installati nel Demo space di Media System Lab nella Be Factory di Rovereto, saranno utilizzati SEM di modelli diversi per offrire una opportunità esperienziale più ampia.

Se sei interessato ad avere informazioni sul corso sem contattaci +39347942823 info@m-s.it